点击上方蓝字设为星标
今天分享的题目来源于 LeetCode 上第 191 号问题:位 1 的个数。
题目描述
编写一个函数,输入是一个无符号整数,返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为汉明重量)。
示例 1:
输入:00000000000000000000000000001011
输出:3
解释:输入的二进制串 00000000000000000000000000001011 中,共有三位为 '1'。
示例 2:
输入:00000000000000000000000010000000
输出:1
解释:输入的二进制串 00000000000000000000000010000000 中,共有一位为 '1'。
示例 3:
输入:11111111111111111111111111111101
输出:31
解释:输入的二进制串 11111111111111111111111111111101 中,共有 31 位为 '1'。
提示:
-
请注意,在某些语言(如 Java)中,没有无符号整数类型。在这种情况下,输入和输出都将被指定为有符号整数类型,并且不应影响您的实现,因为无论整数是有符号的还是无符号的,其内部的二进制表示形式都是相同的。
-
在 Java 中,编译器使用二进制补码记法来表示有符号整数。因此,在上面的 示例 3 中,输入表示有符号整数
-3
。
进阶:
如果多次调用这个函数,你将如何优化你的算法?
题目解析
该题比较简单,解法有挺多,有位移法、位操作法、查表法、二次查表法等方法。
观察一下 n 与 n-1 这两个数的二进制表示:对于 n-1 这个数的二进制来说,相对于 n 的二进制,它的最末位的一个 1 会变成 0,最末位一个 1 之后的 0 会全部变成 1,其它位相同不变。
比如 n = 8888,其二进制为 10001010111000
则 n – 1 = 8887 ,其二进制为 10001010110111
通过按位与操作后:n & (n-1) = 10001010110000
也就是说:通过 n&(n-1)这个操作,可以起到 消除最后一个1 的作用。
所以可以通过执行 n&(n-1) 操作来消除 n 末尾的 1 ,消除了多少次,就说明有多少个 1 。
动画描述
参考代码
class Solution {
public:
int hammingWeight(uint32_t n) {
int cnt = 0;
while(n > 0){
cnt++;
n = n & (n - 1);
}
return cnt;
}
};
复杂度分析
-
时间复杂度:O(k)。
-
空间复杂度:O(1)。
相关题目推荐
-
LeetCode 190:颠倒二进制位
-
LeetCode 231:2 的幂
原文始发于微信公众号(图解面试算法):LeetCode 图解 | 191.位 1 的个数